Reducing mitochondrial bound hexokinase II mediates transition from non-injurious into injurious ischemia/reperfusion of the intact heart
Ischemia/reperfusion (I/R) of the heart becomes injurious when duration of the ischemic insult exceeds a certain threshold (approximately ≥20 min). Mitochondrial bound hexokinase II (mtHKII) protects against I/R injury, with the amount of mtHKII correlating with injury. Here, we examine whether mtHK...
Saved in:
Published in: | Journal of physiology and biochemistry Vol. 73; no. 3; pp. 323 - 333 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Dordrecht
Springer Netherlands
01-08-2016
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ischemia/reperfusion (I/R) of the heart becomes injurious when duration of the ischemic insult exceeds a certain threshold (approximately ≥20 min). Mitochondrial bound hexokinase II (mtHKII) protects against I/R injury, with the amount of mtHKII correlating with injury. Here, we examine whether mtHKII can induce the transition from non-injurious to injurious I/R, by detaching HKII from mitochondria during a non-injurious I/R interval. Additionally, we examine possible underlying mechanisms (increased reactive oxygen species (ROS), increased oxygen consumption (MVO
2
) and decreased cardiac energetics) associated with this transition. Langendorff perfused rat hearts were treated for 20 min with saline, TAT-only or 200 nM TAT-HKII, a peptide that translocates HKII from mitochondria. Then, hearts were exposed to non-injurious 15-min ischemia, followed by 30-min reperfusion. I/R injury was determined by necrosis (LDH release) and cardiac mechanical recovery. ROS were measured by DHE fluorescence. Changes in cardiac respiratory activity (cardiac MVO
2
and efficiency and mitochondrial oxygen tension (mitoPO
2
) using protoporphyrin IX) and cardiac energetics (ATP, PCr, ∆G
ATP
) were determined following peptide treatment. When exposed to 15-min ischemia, control hearts had no necrosis and 85% recovery of function. Conversely, TAT-HKII treatment resulted in significant LDH release and reduced cardiac recovery (25%), indicating injurious I/R. This was associated with increased ROS during ischemia and reperfusion. TAT-HKII treatment reduced MVO
2
and improved energetics (increased PCr) before ischemia, without affecting MVO
2
/RPP ratio or mitoPO
2
. In conclusion, a reduction in mtHKII turns non-injurious I/R into injurious I/R. Loss of mtHKII was associated with increased ROS during ischemia and reperfusion, but not with increased MVO
2
or decreased cardiac energetics before damage occurs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1138-7548 1877-8755 |
DOI: | 10.1007/s13105-017-0555-3 |