Impact of data quality and model complexity on prediction of pesticide leaching

Accurate input data for leaching models are expensive and difficult to obtain which may lead to the use of "general" non-site-specific input data. This study investigated the effect of using different quality data on model outputs. Three models of varying complexity, GLEAMS, LEACHM, and HY...

Full description

Saved in:
Bibliographic Details
Published in:Journal of environmental quality Vol. 35; no. 2; pp. 628 - 640
Main Authors: Dann, R.L, Close, M.E, Lee, R, Pang, L
Format: Journal Article
Language:English
Published: Madison American Society of Agronomy, Crop Science Society of America, Soil Science Society 01-03-2006
Crop Science Society of America
American Society of Agronomy
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate input data for leaching models are expensive and difficult to obtain which may lead to the use of "general" non-site-specific input data. This study investigated the effect of using different quality data on model outputs. Three models of varying complexity, GLEAMS, LEACHM, and HYDRUS-2D, were used to simulate pesticide leaching at a field trial near Hamilton, New Zealand, on an allophanic silt loam using input data of varying quality. Each model was run for four different pesticides (hexazinone, procymidone, picloram and triclopyr); three different sets of pesticide sorption and degradation parameters (i.e., site optimized, laboratory derived, and sourced from the USDA Pesticide Properties Database); and three different sets of soil physical data of varying quality (i.e., site specific, regional database, and particle size distribution data). We found that the selection of site-optimized pesticide sorption (K(oc)) and degradation parameters (half-life), compared to the use of more general database derived values, had significantly more impact than the quality of the soil input data used, but interestingly also more impact than the choice of the models. Models run with pesticide sorption and degradation parameters derived from observed solute concentrations data provided simulation outputs with goodness-of-fit values closest to optimum, followed by laboratory-derived parameters, with the USDA parameters providing the least accurate simulations. In general, when using pesticide sorption and degradation parameters optimized from site solute concentrations, the more complex models (LEACHM and HYDRUS-2D) were more accurate. However, when using USDA database derived parameters, all models performed about equally.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0047-2425
1537-2537
DOI:10.2134/jeq2005.0257