Chlorination of Microcystis aeruginosa: Toxin release and oxidation, cellular chlorine demand and disinfection by-products formation
Direct chlorination of toxic cyanobacteria cells can occur at various stages of treatment. The objectives of this work are to determine and model the extent of Microcystis aeruginosa cells lysis, toxins and organic compounds release and oxidation, and quantify the subsequent disinfection by-products...
Saved in:
Published in: | Water research (Oxford) Vol. 47; no. 3; pp. 1080 - 1090 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Kidlington
Elsevier Ltd
01-03-2013
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Direct chlorination of toxic cyanobacteria cells can occur at various stages of treatment. The objectives of this work are to determine and model the extent of Microcystis aeruginosa cells lysis, toxins and organic compounds release and oxidation, and quantify the subsequent disinfection by-products formation. Chlorine exposure (CT) values of 296 and 100 mg min/L were required to obtain 76% cell lysis and oxidation of released cell-bound toxins at levels below the provisional World Health Organisation guideline value (1 μg/L MC-LR). Toxin oxidation rates were similar or faster than cell lysis rates in ultrapure water. This work presents much needed unit M. aeruginosa cellular chlorine demand (5.6 ± 0.2 pgCl2/cell) which could be used to adjust the chlorination capacity to satisfy the total chlorine demand associated with the presence of cells. Furthermore, a novel successive reaction kinetics model is developed using the kinetics of the chlorine reaction with cyanobacterial cells and cell-bound toxins. Chlorination of dense cell suspensions (500,000 cells/mL) in ultrapure water at CT up to 3051 mg min/L resulted in modest concentrations of trihalomethanes (13 μg/L) and haloacetic acids (below detection limit).
[Display omitted]
► Cumulative chlorine demand per number of lysed cells equals 5.6 ± 0.2 pgCl2/cell. ► Significant influence of cellular debris on estimation of chlorination kinetics. ► Successive reaction kinetics modeling of toxins release-oxidation in chlorination. ► Modest contribution of high cell numbers to disinfection by-product precursors pool. |
---|---|
Bibliography: | http://dx.doi.org/10.1016/j.watres.2012.11.031 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0043-1354 1879-2448 |
DOI: | 10.1016/j.watres.2012.11.031 |