Novel Ce(OH)CO3/carbon nanotubes hybrid material towards a highly sensitive electrochemical dopamine determination in real urine samples

•Electrochemical activated synergy between cerium-based and carbon-based precursors.•Electrochemical sensor treatment for improved dopamine sensitivity and selectivity.•Non-expensive and environmentally friendly synthesis of a hybrid material.•Ideal performance for the electrochemical dopamine deter...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta Vol. 488; p. 144194
Main Authors: Muñoz, Fernando F., Cosci, Santiago, Gonzalez Jorge, J. Iván, Rinaldi, Ana L., Dabas, Paula C., Sobral, Santiago, Carballo, Romina R., Bonetto, M. Celina
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-06-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:•Electrochemical activated synergy between cerium-based and carbon-based precursors.•Electrochemical sensor treatment for improved dopamine sensitivity and selectivity.•Non-expensive and environmentally friendly synthesis of a hybrid material.•Ideal performance for the electrochemical dopamine determination in urine samples. Cerium hydroxycarbonate and multiwalled carbon nanotubes (Ce(OH)CO3/CNT), drop-casted onto a glassy carbon (GC) electrode and electrochemically treated (tCe(OH)CO3/CNT) has been obtained as a new hybrid material. tCe(OH)CO3/CNT was characterized through SEM, FT-IR, UV–Vis, and electrochemical techniques such as cyclic voltammetry (CV) with different redox couples as Fe2+/3+, Fe(CN)63-/4− or Ru(NH3)62+/3+and electrochemical impedance spectroscopy (EIS) measurements with Fe(CN)63-/4−. The charge transfer resistance (RCT) value of tCe(OH)CO3/CNT was up to two orders of magnitude lower than the RCT of bare GC electrodes and these results were confirmed by the effective heterogeneous electron transfer rate constant values (k°eff, 2.4 10−3 vs 7.0 10−4, respectively). The calibration curve of DA exhibits a linear response within the range of 0.1 and 70 μmol L−1 with a correlation coefficient (R2) of 0.987 (n = 3) and a limit of detection of 0.003 μmol L−1. Inorganic and organic interferents do not alter significatively the selectivity. The electrochemical treatment of Ce(OH)CO3 and CNT generates a modified electrode which successfully combines the selectivity of Ce towards catechol with the high conductivity of CNT presenting an ideal performance for the electrochemical DA determination in 5 real urine samples (1.94 μmol L−1 in a 1:20 dilution) using differential pulse voltammetry (DPV) with an RSD < 6.1 %. [Display omitted]
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2024.144194