Development of patient-derived orthotopic xenografts from metastatic colorectal cancer in nude mice
Liver metastasis is the major cause of death for patients with colorectal cancer. Despite treatment with surgery and chemotherapy, patient outcomes are quite unfavourable. Thus, there is an urgent need to develop new treatment strategies with the associated establishment of good animal models. Metas...
Saved in:
Published in: | Journal of drug targeting Vol. 27; no. 9; pp. 943 - 949 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Taylor & Francis
21-10-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Liver metastasis is the major cause of death for patients with colorectal cancer. Despite treatment with surgery and chemotherapy, patient outcomes are quite unfavourable. Thus, there is an urgent need to develop new treatment strategies with the associated establishment of good animal models. Metastatic disease can be modelled using patient-derived orthotopic xenografts, which accurately replicate intra-tumoral heterogeneity so that various chemotherapeutic agents can be tested on individual tumours to aid in clinical decision-making. The objective of this study was to develop metastatic colorectal tumours in athymic nude mice by implanting fresh tumour fragments into mouse liver parenchyma. Metastatic tumours were successfully propagated in mice following transplantation from human patients, then serially implanted in second and third-generation mice. Morphologic and immunohistochemical characteristics indicate that xenografts recreate the tumour architecture and mismatch repair gene expression for MLH1, MSH2, MSH1, and PMS2. After tumour implantation during the first passage, the time of tumour growth decreased without loss of tumour identity. Post-transplantation lymphoproliferative disease was observed in one case. This pilot study was successful in establishing the institutional PDX preclinical platform to study new therapeutic strategies, disease progression biomarkers, and treatment responsiveness. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1061-186X 1029-2330 |
DOI: | 10.1080/1061186X.2018.1509983 |