Green chemistry-based strategies for liquid-phase microextraction and determination of mercury species
This review article explores several liquid-phase microextraction (LPME) strategies in sample treatment for determining mercury species in several matrices. LPME can be subdivided into four main techniques: dispersive liquid-phase microextraction (DLPME), hollow fiber liquid-phase microextraction (H...
Saved in:
Published in: | Trends in environmental analytical chemistry Vol. 44; p. e00247 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-12-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This review article explores several liquid-phase microextraction (LPME) strategies in sample treatment for determining mercury species in several matrices. LPME can be subdivided into four main techniques: dispersive liquid-phase microextraction (DLPME), hollow fiber liquid-phase microextraction (HF-LPME), single drop liquid-phase microextraction (SDME), and cloud point extraction (CPE). The comparative analysis highlights the relative effectiveness of each method. DLPME enables shorter extraction times, but solvent consumption can be high. Although they provide high selectivity, HF-LPME, and SDME, in turn, require longer extraction times, and handling is complex. CPE, employing surfactant-based systems, offers a greener alternative with moderate efficiency but requires careful control of operating conditions. LPME techniques are evaluated in this review, considering advances in green chemistry and the determination and speciation of mercury. The advantages, limitations, and current applications of the techniques are also addressed in the text. |
---|---|
ISSN: | 2214-1588 2214-1588 |
DOI: | 10.1016/j.teac.2024.e00247 |