Effects of rare earth element samarium doped zinc oxide nanoparticles on Mytilus galloprovincialis (Lamarck, 1819): Filtration rates and histopathology

Doping was reported to improve the photo catalytic performance, antioxidant, antibacterial and other biological properties of nanoparticles. While, improving the nanoparticle properties, doping could change toxicity profile to living organism. Hence, the aim of this work was to assess the effects of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of trace elements in medicine and biology Vol. 81; p. 127349
Main Authors: El Ayari, Tahani, Ben Ahmed, Raja, Hammemi, Zaineb, Kouki, Abdessalem, Chelb, Emna, Nechi, Salwa, Trigui El Menif, Najoua
Format: Journal Article
Language:English
Published: Germany 01-01-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Doping was reported to improve the photo catalytic performance, antioxidant, antibacterial and other biological properties of nanoparticles. While, improving the nanoparticle properties, doping could change toxicity profile to living organism. Hence, the aim of this work was to assess the effects of samarium doped zinc oxide nanoparticles (Sm doped ZnO NPs) on the edible mussel Mytilus galloprovincialis. Sm doped ZnO nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) techniques. 156 mussels were exposed during 7 days to a low, intermediate and high concentration of Sm doped ZnO NPs (0.5, 1 and 1.5 mg/L, respectively). The filtration rates were assessed after 1 and 2 h. Histopathological alterations were determined in gills, digestive glands and gonads using a quantitative analysis. The filtration rates decreased in all individuals exposed to Sm doped ZnO NPs, a significant decrease was noted with the low and intermediate concentration (0.5 and 1 mg/L) of Sm doped ZnO NPs after 1 and 2 h, respectively. The histopathological index (Ih) estimated for gills, digestive glands and gonads showed differences depending on the organ and the nanoparticle concentration. The highest Ih were reported for digestive glands and female gonads exposed to the intermediate concentration (1 mg/L) of Sm doped ZnO NPs. As for gills and male gonads, the highest Ih were noted with the high concentration (1.5 mg/L) of Sm doped ZnO NPs. Results from this study revealed the toxicity of Sm doped ZnO NPs in Mytilus galloprovincialis gills, digestive glands and gonads. The toxicity induced by this nanoparticle varies depending on the organ and the concentration.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0946-672X
1878-3252
DOI:10.1016/j.jtemb.2023.127349