IEMOCAP: interactive emotional dyadic motion capture database
Since emotions are expressed through a combination of verbal and non-verbal channels, a joint analysis of speech and gestures is required to understand expressive human communication. To facilitate such investigations, this paper describes a new corpus named the "interactive emotional dyadic mo...
Saved in:
Published in: | Language Resources and Evaluation Vol. 42; no. 4; pp. 335 - 359 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Dordrecht
Springer
01-12-2008
Springer Netherlands Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Since emotions are expressed through a combination of verbal and non-verbal channels, a joint analysis of speech and gestures is required to understand expressive human communication. To facilitate such investigations, this paper describes a new corpus named the "interactive emotional dyadic motion capture database" (IEMOCAP), collected by the Speech Analysis and Interpretation Laboratory (SAIL) at the University of Southern California (USC). This database was recorded from ten actors in dyadic sessions with markers on the face, head, and hands, which provide detailed information about their facial expressions and hand movements during scripted and spontaneous spoken communication scenarios. The actors performed selected emotional scripts and also improvised hypothetical scenarios designed to elicit specific types of emotions (happiness, anger, sadness, frustration and neutral state). The corpus contains approximately 12 h of data. The detailed motion capture information, the interactive setting to elicit authentic emotions, and the size of the database make this corpus a valuable addition to the existing databases in the community for the study and modeling of multimodal and expressive human communication. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 1574-020X 1572-8412 1574-0218 |
DOI: | 10.1007/s10579-008-9076-6 |