Probabilistic flood forecasting in the Doce Basin in Brazil: Effects of the basin scale and orientation and the spatial distribution of rainfall
We critically examined the performance of probabilistic streamflow forecasting in the prediction of flood events in 19 subbasins of the Doce River in Brazil using the Eta (4 members, 5 km spatial resolution) and European Centre for Medium‐Range Weather Forecasts (ECMWF; 51 members, 32 km resolution)...
Saved in:
Published in: | Journal of flood risk management Vol. 12; no. 1 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford, UK
Blackwell Publishing Ltd
01-03-2019
John Wiley & Sons, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We critically examined the performance of probabilistic streamflow forecasting in the prediction of flood events in 19 subbasins of the Doce River in Brazil using the Eta (4 members, 5 km spatial resolution) and European Centre for Medium‐Range Weather Forecasts (ECMWF; 51 members, 32 km resolution) weather forecast models as inputs for the MHD‐INPE hydrological model. We observed that the shapes and orientations of subbasins influenced the predictability of floods due to the orientation of rainfall events. Streamflow forecasts that use the ECMWF data as input showed higher skill scores than those that used the Eta model for subbasins with drainage areas larger than 20,000 km2. Since the skill scores were similar for both models in smaller subbasins, we concluded that the grid size of the weather model could be important for smaller catchments, while the number of members was crucial for larger scales. We also evaluated the performance of probabilistic streamflow forecasting for the severe flood event of late 2013 through a comparison of observations and streamflow estimations derived from interpolated rainfall fields. In many cases, the mean of the ensemble outperformed the streamflow estimations from the interpolated rainfall because the spatial structure of a rainfall event is better captured by weather forecast models. |
---|---|
ISSN: | 1753-318X 1753-318X |
DOI: | 10.1111/jfr3.12452 |