Multistate recapture models: Modelling incomplete individual histories
Multistate capture-recapture models are a natural generalization of the usual one-site recapture models. Similarly, individuals are sampled on discrete occasions, at which they may be captured or not. However, contrary to the one-site case, the individuals can move within a finite set of states betw...
Saved in:
Published in: | Journal of applied statistics Vol. 29; no. 1-4; pp. 353 - 369 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Abingdon
Taylor & Francis Group
01-01-2002
Taylor and Francis Journals Taylor & Francis Ltd Taylor & Francis (Routledge) |
Series: | Journal of Applied Statistics |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multistate capture-recapture models are a natural generalization of the usual one-site recapture models. Similarly, individuals are sampled on discrete occasions, at which they may be captured or not. However, contrary to the one-site case, the individuals can move within a finite set of states between occasions. The growing interest in spatial aspects of population dynamics presently contributes to making multistate models a very promising tool for population biology. We review first the interest and the potential of multistate models, in particular when they are used with individual states as well as geographical sites. Multistate models indeed constitute canonical capture-recapture models for individual categorical covariates changing over time, and can be linked to longitudinal studies with missing data and models such as hidden Markov chains. Multistate models also provide a promising tool for handling heterogeneity of capture, provided states related to capturability can be defined and used. Such an approach could be relevant for population size estimation in closed populations. Multistate models also constitute a natural framework for mixtures of information in individual history data. Presently, most models can be fit using program MARK. As an example, we present a canonical model for multisite accession to reproduction, which fully generalizes a classical one-site model. In the generalization proposed, one can estimate simultaneously age-dependent rates of accession to reproduction, natal and breeding dispersal. Finally, we discuss further generalizations - such as a multistate generalization of growth rate models and models for data where the state in which an individual is detected is known with uncertainty - and prospects for software development. |
---|---|
ISSN: | 0266-4763 1360-0532 |
DOI: | 10.1080/02664760120108638 |