Tropical Cloud Cluster Climatology, Variability, and Genesis Productivity

Tropical cloud clusters (TCCs) are traditionally defined as synoptic-scale areas of deep convection and associated cirrus outflow. They play a critical role in the energy balance of the tropics, releasing large amounts of latent heat high in the troposphere. If conditions are favorable, TCCs can dev...

Full description

Saved in:
Bibliographic Details
Published in:Journal of climate Vol. 26; no. 10; pp. 3046 - 3066
Main Authors: Hennon, Christopher C., Papin, Philippe P., Zarzar, Christopher M., Michael, Jeremy R., Caudill, J. Adam, Douglas, Carson R., Groetsema, Wesley C., Lacy, John H., Maye, Zachery D., Reid, Justin L., Scales, Mark A., Talley, Melissa D., Helms, Charles N.
Format: Journal Article
Language:English
Published: Boston, MA American Meteorological Society 01-05-2013
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tropical cloud clusters (TCCs) are traditionally defined as synoptic-scale areas of deep convection and associated cirrus outflow. They play a critical role in the energy balance of the tropics, releasing large amounts of latent heat high in the troposphere. If conditions are favorable, TCCs can develop into tropical cyclones (TCs), which put coastal populations at risk. Previous work, usually connected with large field campaigns, has investigated TCC characteristics over small areas and time periods. Recently, developments in satellite reanalysis and global best track assimilation have allowed for the creation of a much more extensive database of TCC activity. The authors use the TCC database to produce an extensive global analysis of TCCs, focusing on TCC climatology, variability, and genesis productivity (GP) over a 28-yr period (1982–2009). While global TCC frequency was fairly consistent over the time period, with relatively small interannual variability and no noticeable trend, regional analyses show a high degree of interannual variability with clear trends in some regions. Approximately 1600 TCCs develop around the globe each year; about 6.4% of those develop into TCs. The eastern North Pacific Ocean (EPAC) basin produces the highest number of TCCs (per unit area) in a given year, but the western North Pacific Ocean (WPAC) basin has the highest GP (∼12%). Annual TCC frequency in some basins exhibits a strong correlation to sea surface temperatures (SSTs), particularly in the EPAC, North Atlantic Ocean, and WPAC. However, GP is not as sensitive to SST, supporting the hypothesis that the tropical cyclogenesis process is most sensitive to atmospheric dynamical considerations such as vertical wind shear and large-scale vorticity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0894-8755
1520-0442
DOI:10.1175/jcli-d-12-00387.1