Integrated Analyses of m6A Regulator-Mediated Methylation Modification Patterns and Tumor Microenvironment Infiltration Characterization in Pan-Cancer
The invasion of immune cells in the tumor microenvironment (TME) is closely related to cancer development. Studies have demonstrated that N6-methyladenosine (m6A) can affect the invasion of immune cells in TME as well as cancer development. We comprehensively analyzed the RNA-seq data of 16 differen...
Saved in:
Published in: | International journal of molecular sciences Vol. 23; no. 19; p. 11182 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
23-09-2022
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The invasion of immune cells in the tumor microenvironment (TME) is closely related to cancer development. Studies have demonstrated that N6-methyladenosine (m6A) can affect the invasion of immune cells in TME as well as cancer development. We comprehensively analyzed the RNA-seq data of 16 different cancer types based on 20 m6A regulators and identified two distinct m6A modification patterns, which were closely associated with TME cell infiltration and overall patient survival. Then, we used principal component analysis (PCA) to construct m6Ascore based on the expression of m6A-related prognostic genes, which can successfully predict patient survival. The low-m6Ascore subtype is characterized by more immune cell infiltration, good prognosis and lower TNM stages, while the high-m6Ascore subtype is characterized by low immune infiltration, stromal activation, and poor prognosis. m6Ascore was also closely associated with immunotherapy response and was significantly higher in complete response/partial response (CR/PR) patients than in stable disease/progressive disease (SD/PD) patients in both immunotherapy cohorts. Therefore, our study indicates that m6A modification plays an important role in the prognosis of pan-cancer and the formation of complex TME in pan-cancer. Our research helps to improve the cognition of m6A modifications at pan-cancer levels and identify more effective strategies for immunotherapy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms231911182 |