Toxicity of microbial insecticides toward the non‐target freshwater insect Chironomus xanthus
BACKGROUND Commercial formulations based on Bacillus thuringiensis subs. kurstaki (Btk) and Beauveria bassiana (Bb) are commonly used microbial insecticides in Brazil and other tropical regions. However, and despite being considered environmentally friendly, their use generates concerns regarding po...
Saved in:
Published in: | Pest management science Vol. 76; no. 3; pp. 1164 - 1172 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Chichester, UK
John Wiley & Sons, Ltd
01-03-2020
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | BACKGROUND
Commercial formulations based on Bacillus thuringiensis subs. kurstaki (Btk) and Beauveria bassiana (Bb) are commonly used microbial insecticides in Brazil and other tropical regions. However, and despite being considered environmentally friendly, their use generates concerns regarding possible adverse ecological effects in freshwater ecosystems. Here, we evaluate the effects of these bioinsecticides on the tropical aquatic dipteran Chironomus xanthus under laboratory conditions.
RESULTS
After laboratory exposures to these compounds 48‐h median lethal concentration (LC50) values of 1534 μg a.i./L for Btk and of 6.35 μg a.i./L for Bb were estimated. Chronic assays revealed different sublethal effects: Btk‐based bioinsecticide exposure reduced C. xanthus growth [lowest observed effect concentration (LOEC) was 126 μg a.i./L for head width], decreased emergence rate (LOEC = 8 μg a.i./L) and increased immunological response (LOEC = 50 μg a.i./L) measured as total hemocyte count in larvae hemolymph. Exposure to low concentrations of Bb‐based insecticide also reduced C. xanthus growth (LOEC = 0.07 μg a.i./L for larvae body length measurements), and emergence rate (LOEC = 0.28 μg a.i./L), despite no clear effects on the total hemocyte counts.
CONCLUSION
Our results suggest that low concentrations of Btk and Bb bioinsecticides are toxic to C. xanthus. Given their widespread use and occurrence in tropical freshwater systems, research is needed to evaluate the potential effects of these compounds concerning natural freshwater insect communities and ecosystem functioning. © 2019 Society of Chemical Industry
Results from laboratory ecotoxicity assays indicate that microbial insecticides, used as alternatives to synthetic insecticides, are highly toxic to Chironomus xanthus, a tropical freshwater chironomid. |
---|---|
ISSN: | 1526-498X 1526-4998 |
DOI: | 10.1002/ps.5629 |