Recent advancements in the gas-phase MicroChemLab

Sandia's hand-held MicroChemLab system uses a micromachined preconcentrator, a gas chromatography channel, and a quartz surface acoustic wave array detector for sensitive/selective detection of gas-phase chemical analytes. Requisite system size, performance, power budget, and time response mand...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal Vol. 6; no. 3; pp. 784 - 795
Main Authors: Lewis, P.R., Manginell, P., Adkins, D.R., Kottenstette, R.J., Wheeler, D.R., Sokolowski, S.S., Trudell, D.E., Byrnes, J.E., Okandan, M., Bauer, J.M., Manley, R.G., Frye-Mason, C.
Format: Journal Article
Language:English
Published: New York IEEE 01-06-2006
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sandia's hand-held MicroChemLab system uses a micromachined preconcentrator, a gas chromatography channel, and a quartz surface acoustic wave array detector for sensitive/selective detection of gas-phase chemical analytes. Requisite system size, performance, power budget, and time response mandate microfabrication of the key analytical system components. In the fielded system, hybrid integration has been employed, permitting optimization of the individual components. Recent improvements in the hybrid-integrated system, using plastic, metal, or silicon/glass manifolds, is described, as is system performance against semivolatile compounds and toxic industrial chemicals. The design and performance of a new three-dimensional micro-preconcentrator is also introduced. To further reduce system dead volume, eliminate unheated transfer lines, and simplify assembly, there is an effort to monolithically integrate the silicon PC and GC with a suitable silicon-based detector, such as a magnetically-actuated flexural plate wave sensor or a magnetically-actuated pivot plate resonator
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2006.874495