Self-Assembled CNF/rGO/Tannin Composite: Study of the Physicochemical and Wound Healing Properties
In this study, a conductive composite material, based on graphene oxide (GO), nanocellulose (CNF), and tannins (TA) from pine bark, reduced using polydopamine (PDA), was developed for wound dressing. The amount of CNF and TA was varied in the composite material, and a complete characterization inclu...
Saved in:
Published in: | Polymers Vol. 15; no. 12; p. 2752 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
01-06-2023
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, a conductive composite material, based on graphene oxide (GO), nanocellulose (CNF), and tannins (TA) from pine bark, reduced using polydopamine (PDA), was developed for wound dressing. The amount of CNF and TA was varied in the composite material, and a complete characterization including SEM, FTIR, XRD, XPS, and TGA was performed. Additionally, the conductivity, mechanical properties, cytotoxicity, and in vitro wound healing of the materials were evaluated. A successful physical interaction between CNF, TA, and GO was achieved. Increasing CNF amount in the composite reduced the thermal properties, surface charge, and conductivity, but its strength, cytotoxicity, and wound healing performance were improved. The TA incorporation slightly reduced the cell viability and migration, which may be associated with the doses used and the extract's chemical composition. However, the in-vitro-obtained results demonstrated that these composite materials can be suitable for wound healing. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym15122752 |