CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae
Cpf1 represents a novel single RNA‐guided CRISPR/Cas endonuclease system suitable for genome editing with distinct features compared with Cas9. We demonstrate the functionality of three Cpf1 orthologues – Acidaminococcus spp. BV3L6 (AsCpf1), Lachnospiraceae bacterium ND2006 (LbCpf1) and Francisella...
Saved in:
Published in: | Yeast (Chichester, England) Vol. 35; no. 2; pp. 201 - 211 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Wiley Subscription Services, Inc
01-02-2018
John Wiley and Sons Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cpf1 represents a novel single RNA‐guided CRISPR/Cas endonuclease system suitable for genome editing with distinct features compared with Cas9. We demonstrate the functionality of three Cpf1 orthologues – Acidaminococcus spp. BV3L6 (AsCpf1), Lachnospiraceae bacterium ND2006 (LbCpf1) and Francisella novicida U112 (FnCpf1) – for genome editing of Saccharomyces cerevisiae. These Cpf1‐based systems enable fast and reliable introduction of donor DNA on the genome using a two‐plasmid‐based editing approach together with linear donor DNA. LbCpf1 and FnCpf1 displayed editing efficiencies comparable with the CRISPR/Cas9 system, whereas AsCpf1 editing efficiency was lower. Further characterization showed that AsCpf1 and LbCpf1 displayed a preference for their cognate crRNA, while FnCpf1‐mediated editing with similar efficiencies was observed using non‐cognate crRNAs of AsCpf1 and LbCpf1. In addition, multiplex genome editing using a single LbCpf1 crRNA array is shown to be functional in yeast. This work demonstrates that Cpf1 broadens the genome editing toolbox available for Saccharomyces cerevisiae. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0749-503X 1097-0061 |
DOI: | 10.1002/yea.3278 |