How water acidification influences the organism antioxidant capacity and gill structure of Mediterranean mussel (Mytilus galloprovincialis, Lamarck, 1819) at normoxia and hypoxia

The effect of water acidification in combination with normoxia or hypoxia on the antioxidant capacity and oxidative stress markers in gills and hemolymph of the Mediterranean mussel (Mytilus galloprovincialis), as well as on gill microstructure, has been evaluated through an in vivo experiment. Muss...

Full description

Saved in:
Bibliographic Details
Published in:Comparative biochemistry and physiology. Part A, Molecular & integrative physiology Vol. 296; p. 111682
Main Authors: Gostyukhina, O.L., Gavruseva, T.V., Tkachuk, A.A., Chelebieva, E.S., Podolskaya, M.S., Borovkov, A.B., Bogacheva, E.A., Lavrichenko, D.S., Kladchenko, E.S., Yu, Andreyeva A.
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01-10-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effect of water acidification in combination with normoxia or hypoxia on the antioxidant capacity and oxidative stress markers in gills and hemolymph of the Mediterranean mussel (Mytilus galloprovincialis), as well as on gill microstructure, has been evaluated through an in vivo experiment. Mussels were exposed to a low pH (7.3) under normal dissolved oxygen (DO) conditions (8 mg/L), and hypoxia (2 mg/L) for 8 days, and samples were collected on days 1, 3, 6, and 8 to evaluate dynamic changes of physiological responses. Cytoplasmic concentrations of reactive oxygen species (ROS) and levels of DNA damage were measured in hemocytes, while the activity of catalase (CAT) and superoxide dismutase (SOD) and histopathological changes were assessed in gills. The results revealed that while water acidification did not significantly affect the activity of SOD and CAT in gills under normoxic and hypoxic conditions, there was a trend towards suppression of CAT activity at the end of the experimental period (day 8). Similarly, we did not observe increased formation of ROS in hemocytes or changes in the levels of DNA damage during the experimental period. These results strongly suggest that the oxidative stress response system in mussels is relatively stable to experimental conditions of acidification and hypoxia. Experimental acidification under normoxia and hypoxia caused changes to the structure of the gills, leading to various histopathological alterations, including dilation, hemocyte infiltration into the hemal sinuses, intercellular edema, vacuolization of epithelial cells in gill filaments, lipofuscin accumulation, changes in the shape and adjacent gill filaments, hyperplasia, exfoliation of the epithelial layer, necrosis, swelling, and destruction of chitinous layers (chitinous rods). Most of these alterations were reversible, non-specific changes that represent a general inflammatory response and changes in the morphology of the gill filaments. The dynamics of histopathological alterations suggests an active adaptive response of gills to environmental stresses. Taken together, our data indicate that Mediterranean mussels have a relative tolerance to water acidification and hypoxia at tissue and cellular levels. [Display omitted] •Mediterranean mussels demonstrate relative tolerance to water acidification and hypoxia.•Acidification combined with normoxia/hypoxia did not promote ROS formation and DNA damage in hemocytes.•The activity of SOD and CAT in gills was stable upon acidification and hypoxia.•Acidification combined with normoxia/hypoxia led to inflammation in gills and the morphological lesions of filaments
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1095-6433
1531-4332
1531-4332
DOI:10.1016/j.cbpa.2024.111682