Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI)

A brain-computer interface (BCI) based on functional magnetic resonance imaging (fMRI) records noninvasively activity of the entire brain with a high spatial resolution. We present a fMRI-based BCI which performs data processing and feedback of the hemodynamic brain activity within 1.3 s. Using this...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering Vol. 51; no. 6; pp. 966 - 970
Main Authors: Weiskopf, N., Mathiak, K., Bock, S.W., Scharnowski, F., Veit, R., Grodd, W., Goebel, R., Birbaumer, N.
Format: Journal Article
Language:English
Published: United States IEEE 01-06-2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A brain-computer interface (BCI) based on functional magnetic resonance imaging (fMRI) records noninvasively activity of the entire brain with a high spatial resolution. We present a fMRI-based BCI which performs data processing and feedback of the hemodynamic brain activity within 1.3 s. Using this technique, differential feedback and self-regulation is feasible as exemplified by the supplementary motor area (SMA) and parahippocampal place area (PPA). Technical and experimental aspects are discussed with respect to neurofeedback. The methodology now allows for studying behavioral effects and strategies of local self-regulation in healthy and diseased subjects.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0018-9294
1558-2531
DOI:10.1109/TBME.2004.827063