Identification and validation of fusidic acid and flufenamic acid as inhibitors of SARS-CoV-2 replication using DrugSolver CavitomiX
In this work, we present DrugSolver CavitomiX, a novel computational pipeline for drug repurposing and identifying ligands and inhibitors of target enzymes. The pipeline is based on cavity point clouds representing physico-chemical properties of the cavity induced solely by the protein. To test the...
Saved in:
Published in: | Scientific reports Vol. 13; no. 1; p. 11783 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
21-07-2023
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we present DrugSolver CavitomiX, a novel computational pipeline for drug repurposing and identifying ligands and inhibitors of target enzymes. The pipeline is based on cavity point clouds representing physico-chemical properties of the cavity induced solely by the protein. To test the pipeline’s ability to identify inhibitors, we chose enzymes essential for SARS-CoV-2 replication as a test system. The active-site cavities of the viral enzymes
main protease
(M
pro
) and
papain-like protease
(Pl
pro
), as well as of the human transmembrane serine protease 2 (TMPRSS2), were selected as target cavities. Using active-site point-cloud comparisons, it was possible to identify two compounds—flufenamic acid and fusidic acid—which show strong inhibition of viral replication. The complexes from which fusidic acid and flufenamic acid were derived would not have been identified using classical sequence- and structure-based methods as they show very little structural (TM-score: 0.1 and 0.09, respectively) and very low sequence (~ 5%) identity to M
pro
and TMPRSS2, respectively. Furthermore, a cavity-based off-target screening was performed using acetylcholinesterase (AChE) as an example. Using cavity comparisons, the human carboxylesterase was successfully identified, which is a described off-target for AChE inhibitors. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-39071-z |