Polyaniline-Based Flexible Sensor for pH Monitoring in Oxidizing Environments
Measuring pH in oxidizing solutions is a crucial issue in areas such as aquaculture, water treatment, industrial chemistry, and environmental analysis. For this purpose, a low-cost potentiometric flexible sensor using a polymer film as a pH-sensitive material has been developed in this study. The se...
Saved in:
Published in: | Chemosensors Vol. 12; no. 6; p. 97 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-06-2024
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Measuring pH in oxidizing solutions is a crucial issue in areas such as aquaculture, water treatment, industrial chemistry, and environmental analysis. For this purpose, a low-cost potentiometric flexible sensor using a polymer film as a pH-sensitive material has been developed in this study. The sensor consists in a polyaniline film electrodeposited from a sulfuric acid solution on a gold electrode previously deposited on a flexible polyimide substrate. The resulting polyaniline-based pH sensors showed an interesting performance detection in aqueous solution, leading to sensitive (73.4 mV per unit pH) and reproducible (standard deviation of 1.75) responses over the entire pH range from 3 to 8. On the contrary, they were inoperative in the presence of oxidizing hypochlorite ions. Thus, other polyaniline films were electrodeposited in the presence of cetyltrimethylammonium bromide or Tritonx100 surfactant in an attempt to improve the sensing performance of the pH sensors in oxidizing solutions. The pH sensors based on polyaniline and Tritonx100 surfactant were then found to be sensitive (62.3 mV per unit pH) and reproducible (standard deviation of 1.52) in aqueous solutions containing hypochlorite ions. All polyaniline films were also characterized by profilometry and electronic microscopy to correlate the physicochemical features with the performance of the sensors. |
---|---|
ISSN: | 2227-9040 2227-9040 |
DOI: | 10.3390/chemosensors12060097 |