Loss of the KN Motif and AnKyrin Repeat Domain 1 (KANK1) Leads to Lymphoid Compartment Dysregulation in Murine Model

The KN Motif and AnKyrin Repeat Domain 1 (KANK1) is proposed as a tumour suppressor gene, as its expression is reduced or absent in several types of tumour tissue, and over-expressing the protein inhibited the proliferation of tumour cells in solid cancer models. We report a novel germline loss of h...

Full description

Saved in:
Bibliographic Details
Published in:Genes Vol. 14; no. 10; p. 1947
Main Authors: Almosailleakh, Marwa, Bentivegna, Sofia, Narcisi, Samuele, Benquet, Sébasitien J, Gillberg, Linn, Montaño-Almendras, Carmen P, Savickas, Simonas, Schoof, Erwin M, Wegener, Amelie, Luche, Hérve, Jensen, Henrik E, Côme, Christophe, Grønbæk, Kirsten
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-10-2023
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The KN Motif and AnKyrin Repeat Domain 1 (KANK1) is proposed as a tumour suppressor gene, as its expression is reduced or absent in several types of tumour tissue, and over-expressing the protein inhibited the proliferation of tumour cells in solid cancer models. We report a novel germline loss of heterozygosity mutation encompassing the KANK1 gene in a young patient diagnosed with myelodysplastic neoplasm (MDS) with no additional disease-related genomic aberrations. To study the potential role of KANK1 in haematopoiesis, we generated a new transgenic mouse model with a confirmed loss of KANK1 expression. KANK1 knockout mice did not develop any haematological abnormalities; however, the loss of its expression led to alteration in the colony forming and proliferative potential of bone marrow (BM) cells and a decrease in hematopoietic stem and progenitor cells (HSPCs) population frequency. A comprehensive marker expression analysis of lineage cell populations indicated a role for Kank1 in lymphoid cell development, and total protein analysis suggests the involvement of Kank1 in BM cells’ cytoskeleton formation and mobility.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:2073-4425
2073-4425
DOI:10.3390/genes14101947