Low doses of neurotensin in the preoptic area produce hyperthermia. Comparison with other brain sites and with neurotensin-induced analgesia
High amounts of neurotensin (NT) are found in the preoptic area of the hypothalamus, an area known to be involved in the regulation of body temperature. It is generally believed that NT is a peptide that produces hypothermia, and several sites in the brain have been proposed to mediate NT-induced hy...
Saved in:
Published in: | Brain research bulletin Vol. 39; no. 5; pp. 275 - 279 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
Elsevier Inc
1996
Elsevier Science |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High amounts of neurotensin (NT) are found in the preoptic area of the hypothalamus, an area known to be involved in the regulation of body temperature. It is generally believed that NT is a peptide that produces hypothermia, and several sites in the brain have been proposed to mediate NT-induced hypothermia, including the preoptic area. However, the doses of NT used in these experiments were always very high (microgram order) whereas, according to Goedert, the total brain content of NT in the rat does not exceed 10 ng. We therefore reinvestigated the effects of microinjections of NT in the brain, using high (5 μg) and low (50 and 5 ng) doses, into the preoptic area and other brain sites (cerebral ventricles, posterior hypothalamus, and nucleus accumbens), and we also studied, as a comparison, the effects of high and low doses of NT on pain sensitivity in the same sites. The results show that the preoptic area has unique properties in the regulation of body temperature: low doses of NT in the preoptic area produce a hyperthermic response, whereas high doses produce hypothermia. In comparison, NT produces hypothermia in the posterior hypothalamus whatever the dose, and NT has analgesic effects in the preoptic area only at high doses. Besides, NT has no thermic effect, but does have an analgesic effect, in the nucleus accumbens. The selectivity of the actions of high doses of NT, as well as the mechanism of action of NT (possibly an endogenous neuroleptic), are discussed. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0361-9230 1873-2747 |
DOI: | 10.1016/0361-9230(95)02138-8 |