VORTEX: Physics-Driven Data Augmentations Using Consistency Training for Robust Accelerated MRI Reconstruction
Deep neural networks have enabled improved image quality and fast inference times for various inverse problems, including accelerated magnetic resonance imaging (MRI) reconstruction. However, such models require a large number of fully-sampled ground truth datasets, which are difficult to curate, an...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
03-11-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Deep neural networks have enabled improved image quality and fast inference
times for various inverse problems, including accelerated magnetic resonance
imaging (MRI) reconstruction. However, such models require a large number of
fully-sampled ground truth datasets, which are difficult to curate, and are
sensitive to distribution drifts. In this work, we propose applying
physics-driven data augmentations for consistency training that leverage our
domain knowledge of the forward MRI data acquisition process and MRI physics to
achieve improved label efficiency and robustness to clinically-relevant
distribution drifts. Our approach, termed VORTEX, (1) demonstrates strong
improvements over supervised baselines with and without data augmentation in
robustness to signal-to-noise ratio change and motion corruption in
data-limited regimes; (2) considerably outperforms state-of-the-art purely
image-based data augmentation techniques and self-supervised reconstruction
methods on both in-distribution and out-of-distribution data; and (3) enables
composing heterogeneous image-based and physics-driven data augmentations. Our
code is available at https://github.com/ad12/meddlr. |
---|---|
DOI: | 10.48550/arxiv.2111.02549 |