Urban sediment contamination in a former Hg mining district, Idrija, Slovenia

Road sediments from gully pots of the drainage system and stream sediments from local streams were investigated for the first time in the urban area of Idrija town, the central part of the second largest and strongly contaminated Hg mining district in the world. Hg concentrations in road sediments w...

Full description

Saved in:
Bibliographic Details
Published in:Environmental geochemistry and health Vol. 36; no. 3; pp. 427 - 439
Main Authors: Bavec, pela, Biester, Harald, Gosar, Mateja
Format: Journal Article
Language:English
Published: Dordrecht Springer-Verlag 01-06-2014
Springer Netherlands
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Road sediments from gully pots of the drainage system and stream sediments from local streams were investigated for the first time in the urban area of Idrija town, the central part of the second largest and strongly contaminated Hg mining district in the world. Hg concentrations in road sediments were lower than in stream sediments. They ranged from 16 to 110 mg/kg (Md = 29 mg/kg) for <0.125 mm particles and from 7 to 125 mg/kg (Md = 35 mg/kg) for <0.04 mm particles, while Hg concentrations in stream sediments ranged from 10 to 610 mg/kg (Md = 95 mg/kg) for <0.125 particles and from 10 to 440 mg/kg (Md = 105 mg/kg) for <0.04 mm particles. High Hg loadings in stream sediments were successfully linked with identified mercury sources (rocks containing mercury ore, areas of former ore roasting sites, ore residue dumps), because they are located in the drainage areas of streams, from which the sediments were collected. Links between Hg loadings in road sediments and identified mercury sources were not recognized. Solid phases of Hg were determined by thermo-desorption technique and are similar for both types of sediments. Results show the occurrence of three different forms: elemental mercury, mercury bound to matrix components and cinnabar. Approximately 50 % of Hg in samples consist of non-cinnabar fractions. This is important, since they are potentially bioavailable. An interesting new discovery according to previous research of environmental media from Idrija area by solid-phase Hg thermo-desorption technique is that elemental mercury was determined in almost all investigated sediments in minor amounts (Md = 3 %).
Bibliography:http://dx.doi.org/10.1007/s10653-013-9571-6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0269-4042
1573-2983
DOI:10.1007/s10653-013-9571-6