A model for community-driven development of best practices: the Ocean Observatories Initiative Biogeochemical Sensor Data Best Practices and User Guide
The field of oceanography is transitioning from data-poor to data-rich, thanks in part to increased deployment of in-situ platforms and sensors, such as those that instrument the US-funded Ocean Observatories Initiative (OOI). However, generating science-ready data products from these sensors, parti...
Saved in:
Published in: | Frontiers in Marine Science Vol. 11 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Frontiers Media S.A
03-04-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The field of oceanography is transitioning from data-poor to data-rich, thanks in part to increased deployment of
in-situ
platforms and sensors, such as those that instrument the US-funded Ocean Observatories Initiative (OOI). However, generating science-ready data products from these sensors, particularly those making biogeochemical measurements, often requires extensive end-user calibration and validation procedures, which can present a significant barrier. Openly available community-developed and -vetted Best Practices contribute to overcoming such barriers, but collaboratively developing user-friendly Best Practices can be challenging. Here we describe the process undertaken by the NSF-funded OOI Biogeochemical Sensor Data Working Group to develop Best Practices for creating science-ready biogeochemical data products from OOI data, culminating in the publication of the GOOS-endorsed OOI Biogeochemical Sensor Data Best Practices and User Guide. For Best Practices related to ocean observatories, engaging observatory staff is crucial, but having a “user-defined” process ensures the final product addresses user needs. Our process prioritized bringing together a diverse team and creating an inclusive environment where all participants could effectively contribute. Incorporating the perspectives of a wide range of experts and prospective end users through an iterative review process that included “Beta Testers’’ enabled us to produce a final product that combines technical information with a user-friendly structure that illustrates data analysis pipelines via flowcharts and worked examples accompanied by pseudo-code. Our process and its impact on improving the accessibility and utility of the end product provides a roadmap for other groups undertaking similar community-driven activities to develop and disseminate new Ocean Best Practices. |
---|---|
ISSN: | 2296-7745 2296-7745 |
DOI: | 10.3389/fmars.2024.1358591 |