Glutamate imbalance in key structure of the default mode network in adults with attention-deficit/hyperactivity disorder
The default mode network (DMN) is atypically active in patients with ADHD, likely contributing to the inattention patterns observed in patients with the disorder. Nonetheless, magnetic resonance spectroscopy (MRS) studies have rarely targeted the posterior cingulate cortex, a key DMN region, and lit...
Saved in:
Published in: | European archives of psychiatry and clinical neuroscience |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
16-05-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The default mode network (DMN) is atypically active in patients with ADHD, likely contributing to the inattention patterns observed in patients with the disorder. Nonetheless, magnetic resonance spectroscopy (MRS) studies have rarely targeted the posterior cingulate cortex, a key DMN region, and little is known about the biochemical setting within this network in patients with ADHD. We aimed to assess the differences in metabolite profiles of the posterior cingulate cortex-a key region of the DMN-between patients with ADHD and controls. Five brain metabolites-glutamate, inositol, N-acetyl aspartate, choline, and creatine-were measured through MRS in the posterior cingulate cortex of patients and controls in a 3.0 T scanner. Between-group comparison of neurometabolite concentrations in PCC was performed using multivariate analysis of covariance. A total of 88 patients and 44 controls were included in the analysis. Patients with ADHD showed lower levels of glutamate in the posterior cingulate cortex compared to controls (p = 0.003). Lower concentrations of glutamate in the posterior cingulate cortex suggest that a glutamatergic imbalance within the posterior cingulate cortex might play a role in the pathogenesis of ADHD. Further understanding of the causes and consequences of such glutamate decrease might help explain how some glutamate-related drug effects impact on ADHD symptomatology. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0940-1334 1433-8491 |
DOI: | 10.1007/s00406-024-01805-z |