Isolation and characterization of vibriophage vB_Vc_SrVc9: an effective agent in preventing Vibrio campbellii infections in brine shrimp nauplii (Artemia franciscana)
Aims This study describes the physicochemical and genomic characterization of phage vB_Vc_SrVc9 and its potential for phage therapy application against a pathogenic Vibrio campbellii strain. Methods and Results A lytic phage vB_Vc_SrVc9 against V. campbellii was isolated from shrimp farm sediment, a...
Saved in:
Published in: | Journal of applied microbiology Vol. 131; no. 1; pp. 36 - 49 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cambridge
Oxford University Press
01-07-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aims
This study describes the physicochemical and genomic characterization of phage vB_Vc_SrVc9 and its potential for phage therapy application against a pathogenic Vibrio campbellii strain.
Methods and Results
A lytic phage vB_Vc_SrVc9 against V. campbellii was isolated from shrimp farm sediment, and characterized physicochemical and genomically. The use of vB_Vc_SrVc9 phage increased the survival in brine shrimp Artemia franciscana and reduced presumptive V. campbellii to nondetectable numbers. Genomic analysis showed a genome with a single contig of 43·15 kb, with 49 predicted genes and no tRNAs, capable of recognizing and generating complete inhibition zones of three Vibrio sp.
Conclusions
To our knowledge vB_Vc_SrVc9 is a lytic phage that could be used against Vibrio infections, reducing vibrio presence without any apparent impact over the natural microbiota at the family level in 28 libraries tested.
Significance and Impact of the Study
vB_Vc_SrVC9 is a novel phage and ecofriendly alternative for therapeutic applications and biotechnological purposes because is stable at different environmental conditions, has the potential to eliminate several strains, and has a short latent period with a good burst size. Therefore, the use of phages, which are natural killers of bacteria, represents a promising strategy to reduce the mortality of farmed organisms caused by pathogenic bacteria. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1364-5072 1365-2672 |
DOI: | 10.1111/jam.14937 |