Finite Element Analysis of Plastic Deformation in Ultrasonic Vibration Superimposed Face Milling of Steel X46Cr13
Ultrasonic vibration superimposed face milling enables the generation of predefined surface microstructures by an appropriate setting of the process parameters. The geometrical reproducibility of the surface characteristics depends strongly on the plastic material deformation. Thus, the precise pred...
Saved in:
Published in: | Micromachines (Basel) Vol. 15; no. 6; p. 730 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
30-05-2024
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ultrasonic vibration superimposed face milling enables the generation of predefined surface microstructures by an appropriate setting of the process parameters. The geometrical reproducibility of the surface characteristics depends strongly on the plastic material deformation. Thus, the precise prediction of the emerging surface microstructures using kinematic simulation models is limited, because they ignore the influence of material flow. Consequently, the effects of plastic as well as elastic deformation are investigated in depth by finite element analysis. Microstructured surfaces resulting from these numerical models are characterized quantitatively by areal surface parameters and compared to those from a kinematical simulation and a real machined surface. A high degree of conformity between the values of the simulated surfaces and the measured values is achieved, particularly with regard to material distribution. Deficits in predictability exist primarily due to deviations in plastic deformation. Future research can address this, either by implementing a temperature consideration or adapting specific modeling aspects like an adjusted depth of cut or experimental validated material parameters. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2072-666X 2072-666X |
DOI: | 10.3390/mi15060730 |