Cryogenic and Room Temperature ECAP Consolidation of Blended Elemental Powders of Aluminum and Copper
The effect of temperature was investigated on the consolidation of blended elemental powders of aluminum and copper by equal channel angular pressing (ECAP). Aluminum and Copper powders (1:1% vol.) were blended and consolidated in a 90° ECAP die at room (RT) and cryogenic temperatures (CT - ~77 K)....
Saved in:
Published in: | Materials research (São Carlos, São Paulo, Brazil) Vol. 25; p. 1 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Sao Carlos
Universidade Federal do Sao Carlos, Departamento de Engenharia de Materiais
01-01-2022
ABM, ABC, ABPol Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effect of temperature was investigated on the consolidation of blended elemental powders of aluminum and copper by equal channel angular pressing (ECAP). Aluminum and Copper powders (1:1% vol.) were blended and consolidated in a 90° ECAP die at room (RT) and cryogenic temperatures (CT - ~77 K). ECAP samples were pressed until 4 passes at room temperature in route Bc. As a reference, a sample was obtained by conventional uniaxial pressing. The obtained results indicated a much denser (>99.5%) and harder structure by cryogenic ECAP. The hardness after one pass at CT was comparable with 4 passes at room temperature. Tensile tests performed at CT for materials with similar chemical composition showed a simultaneous increase in strength and ductility at CT, corroborating the results obtained by ECAP. The partial suppression of dynamic recovery and the activation and the transition between deformation mechanisms at CT, as well as stacking fault energies (SFE) of such metals, played an important role in these results. Copper presented a much higher capability of strain hardening than aluminum, due to its lower SFE and much lower homologous temperature. X-ray diffraction indicated a strong correlation between the variation of average microstrain and the variation of hardness on both metals. The results of this study demonstrated the great potential of the application of very low temperatures for the obtaining of deformation metal-metal composites. |
---|---|
ISSN: | 1516-1439 1980-5373 1980-5373 |
DOI: | 10.1590/1980-5373-mr-2021-0414 |