High-resolution image dataset for the automatic classification of phenological stage and identification of racemes in Urochloa spp. hybrids

Urochloa grasses are widely used forages in the Neotropics and are gaining importance in other regions due to their role in meeting the increasing global demand for sustainable agricultural practices. High-throughput phenotyping (HTP) is important for accelerating Urochloa breeding programs focused...

Full description

Saved in:
Bibliographic Details
Published in:Data in brief Vol. 57; p. 110928
Main Authors: Arrechea-Castillo, Darwin Alexis, Espitia-Buitrago, Paula, Arboleda, Ronald David, Hernandez, Luis Miguel, Jauregui, Rosa N., Cardoso, Juan Andrés
Format: Journal Article
Language:English
Published: Netherlands Elsevier Inc 01-12-2024
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Urochloa grasses are widely used forages in the Neotropics and are gaining importance in other regions due to their role in meeting the increasing global demand for sustainable agricultural practices. High-throughput phenotyping (HTP) is important for accelerating Urochloa breeding programs focused on improving forage and seed yield. While RGB imaging has been used for HTP of vegetative traits, the assessment of phenological stages and seed yield using image analysis remains unexplored in this genus. This work presents a dataset of 2,400 high-resolution RGB images of 200 Urochloa hybrid genotypes, captured over seven months and covering both vegetative and reproductive stages. Images were manually labelled as vegetative or reproductive, and a subset of 255 reproductive stage images were annotated to identify 22,340 individual racemes. This dataset enables the development of machine learning and deep learning models for automated phenological stage classification and raceme identification, facilitating HTP and accelerated breeding of Urochloa spp. hybrids with high seed yield potential.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2352-3409
2352-3409
DOI:10.1016/j.dib.2024.110928