Low-temperature persulfate activation by powdered activated carbon for simultaneous destruction of perfluorinated carboxylic acids and 1,4-dioxane

Carbonaceous materials have emerged as a method of persulfate activation for remediation. In this study, persulfate activation using powdered activated carbon (PAC) was demonstrated at temperatures relevant to groundwater (5–25 °C). At room temperature, increasing doses of PAC (1–20 g L-1) led to in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hazardous materials Vol. 442; p. 129966
Main Authors: Manz, Katherine E., Kulaots, Indrek, Greenley, Caroline A., Landry, Patrick J., Lakshmi, K.V., Woodcock, Matthew J., Hellerich, Lucas, Bryant, J. Daniel, Apfelbaum, Mike, Pennell, Kurt D.
Format: Journal Article
Language:English
Published: Elsevier B.V 15-01-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carbonaceous materials have emerged as a method of persulfate activation for remediation. In this study, persulfate activation using powdered activated carbon (PAC) was demonstrated at temperatures relevant to groundwater (5–25 °C). At room temperature, increasing doses of PAC (1–20 g L-1) led to increased persulfate activation (3.06 × 10-6s-1 to 2.10 × 10-4 with 1 and 20 g L-1 PAC). Activation slowed at lower temperatures (5 and 11 °C); however, substantial (>70 %) persulfate activation was achieved. PAC characterization showed that persulfate is activated at the surface of the PAC, as indicated by an increase in the PAC C:O ratio. Similarly, electron paramagnetic resonance (EPR) spectroscopy studies with a spin trapping agents (5,5-dimethyl-1-pyrroline N-oxide (DMPO)) and 2,2,6,6-tetramethylpiperidine (TEMP) revealed that singlet oxygen was not the main oxidizing species in the reaction. DMPO was oxidized to form 5,5-dimethylpyrrolidone-2(2)-oxyl-(1) (DMPOX), which forms in the presence of strong oxidizers, such as sulfate radicals. The persulfate/PAC system is demonstrated to simultaneously degrade both perfluorooctanoic acid (PFOA) and 1,4-dioxane at room temperature and 11 °C. With a 20 g L-1 PAC and 75 mM persulfate, 80 % and 70 % of the PFOA and 1,4-dioxane, respectively, degraded within 6 h at room temperature. At 11 °C, the same PAC and persulfate doses led to 57% dioxane degradation and 54 % PFOA degradation within 6 h. Coupling PAC with persulfate offers an effective, low-cost treatment for simultaneous destruction of 1,4-dioxane and PFOA. [Display omitted] •Persulfate is activated by powder activated carbon (PAC) at temperatures less than 25 °C.•Co-contaminants 1,4-dioxane and perfluorooctanoic acid are degraded at relevant temperatures.•Targeted and non-targeted mass spectrometry are used to establish PFOA degradation mechanism.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2022.129966