Noise power spectrum in compressed sensing magnetic resonance imaging
Compressed sensing magnetic resonance imaging (CS-MRI) uses random undersampling and nonlinear iterative reconstruction. This study was conducted to clarify the noise power spectrum (NPS) characteristics of CS-MRI. We measured two-dimensional (2D) NPS of CS-MRI with various acceleration factors (AF)...
Saved in:
Published in: | Radiological physics and technology Vol. 14; no. 1; pp. 93 - 99 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Singapore
Springer Singapore
01-03-2021
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Compressed sensing magnetic resonance imaging (CS-MRI) uses random undersampling and nonlinear iterative reconstruction. This study was conducted to clarify the noise power spectrum (NPS) characteristics of CS-MRI. We measured two-dimensional (2D) NPS of CS-MRI with various acceleration factors (AF) and denoising factors (DF) and compared their appearance to those of conventional parallel MR images. Results showed that the 2D NPS of CS-MRI exhibited the following characteristics: (1) local decrease in the low-frequency region, (2) gradual decrease in the high-frequency region, and (3) a stripe pattern aligned at unequal intervals in the phase-encoding direction. Specifically, the 2D NPS of CS-MRI reflects the random undersampling pattern of k-space data. Additionally, 2D NPS allowed visualization of AF-dependent noise characteristics of CS-MRI. Furthermore, 1D NPS graph shapes clarified the CS-MRI noise characteristic dependence on AF and DF. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1865-0333 1865-0341 |
DOI: | 10.1007/s12194-021-00608-4 |