Artificial versus natural crystals: effective wave impedance of printed photonic bandgap materials
Printed metallo-dielectric photonic bandgap (PBG) materials are analyzed using an analytical approach based on multipole expansions for the scattered fields of individual scatterers and a transfer-matrix method for reconstructing the total scattered fields created by successive lattice planes of the...
Saved in:
Published in: | IEEE transactions on antennas and propagation Vol. 48; no. 1; pp. 95 - 106 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-01-2000
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Printed metallo-dielectric photonic bandgap (PBG) materials are analyzed using an analytical approach based on multipole expansions for the scattered fields of individual scatterers and a transfer-matrix method for reconstructing the total scattered fields created by successive lattice planes of the artificial crystal. An effective description of the PBG medium is derived and its correspondence with natural crystals is further advanced through an analysis based on Lorentzian response functions, which characterize natural crystals. The effective wave impedance and bulk reflection coefficient of the medium are provided and their properties inside and outside the bandgaps are examined. The presented treatment for these effective response functions extends far beyond the traditional effective medium theory (EMT) limits. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/8.827390 |