Influence of occlusal bite forces on teeth with altered periodontal support: A three-dimensional finite element stress analysis
Background: Masticatory forces generate various degrees of stress and strain in the periodontium of teeth which determine the clinical functions and load-bearing capacity of the teeth. There are few in vitro studies that have analyzed stress generated due to combined forces acting on the teeth. Thus...
Saved in:
Published in: | Journal of pharmacy & bioallied science Vol. 13; no. 5; pp. 688 - 691 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
India
Wolters Kluwer India Pvt. Ltd
01-06-2021
Medknow Publications and Media Pvt. Ltd Medknow Publications & Media Pvt. Ltd Wolters Kluwer - Medknow Wolters Kluwer Medknow Publications |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background: Masticatory forces generate various degrees of stress and strain in the periodontium of teeth which determine the clinical functions and load-bearing capacity of the teeth. There are few in vitro studies that have analyzed stress generated due to combined forces acting on the teeth. Thus, the objective of the present study was to do a comparative analysis of the influence of various stresses on the periodontal ligament and alveolar bone of maxillary central incisor with normal bone height and reduced bone height under simulated standard masticatory using finite element stress analysis. Methodology: A 3D model of the tooth was obtained with the help of ANSYS software. These models were subjected to various oblique forces, i.e., 100N and 235.9N, applied at 45° angle on the lingual surface of the maxillary central incisor and stress values were recorded in three dimensions. The results from FE analysis were analyzed using 3D Von Mises Criteria. Results: It was observed that in healthy periodontium; it was observed that among the periodontal structure studied, the maximum stress levels were exerted on root followed by cortical bone, cancellous bone, and PDL, irrespective of the force, as compared to the diseased periodontium, in which the bone height was reduced, the maximum stresses were on root followed by cortical bone, PDL, and cancellous bone. Conclusion: The main factor governing the success of any periodontal procedure depends on the height of the remaining bone and the amount of force exerted on to the tooth and the stress generated within the tooth. The finite element method could be of substantial importance in this respect as it can assess the stresses of various occlusal forces on the periodontal ligament, root, cortical bone, and cancellous bone of teeth in a periodontally healthy and diseased state. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0975-7406 0976-4879 0975-7406 |
DOI: | 10.4103/jpbs.JPBS_785_20 |