Evaluation of a bioenergy resource of agricultural residues and municipal solid wastes in Benin

Benin is one of the West African countries with low access to energy. Abundant residues are generated from different activities in Benin, most of which are not yet considered for energy generation. In this study, we aim to evaluate the potential of bioenergy resources from agricultural residues and...

Full description

Saved in:
Bibliographic Details
Published in:AIMS energy Vol. 12; no. 1; pp. 167 - 189
Main Authors: Akpahou, Romain, Admas, Marshet M., Adaramola, Muyiwa S
Format: Journal Article
Language:English
Published: AIMS Press 2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Benin is one of the West African countries with low access to energy. Abundant residues are generated from different activities in Benin, most of which are not yet considered for energy generation. In this study, we aim to evaluate the potential of bioenergy resources from agricultural residues and municipal solid waste (MSW) in Benin. Eleven (11) agricultural residues have been considered in the study and four of them with high bioenergy potential have been used in the Bioenergy and Food Security Rapid Appraisal (BEFS RA) tool to evaluate how much electricity could be generated from gasification and analyze the social and economic benefits that can be attained. We also introduce the residue-to-product approach and the NPV and IRR method to estimate the potential of agricultural residues and MSW and analyze the viability of generating electricity through the gasification process. Data for agricultural residues have been collected from Benin's Directorate of Agricultural Statistics governmental website and MSW data is estimated using World Bank data for 2012 and 2025. Our estimation shows that a total bioenergy potential of 142.63 PJ can be generated from agricultural residue and MSW in Benin produced in 2021. Agricultural residues are the highest contributor, contributing up to 98%. The bioenergy potential available for electricity generation is estimated at 85.6 PJ with maize the major contributor at 45%, followed by cotton and cassava residues at 17% and 13%, respectively. The BEFS RA simulation shows that 20, 849; 83, 395 and 208, 488 kWh per year can be generated from the available feedstock based on using 10, 40, and 100 kW plants respectively. Moreover, the net present value and the internal rate of return of all power plants are positive, showing the importance of investing in power generation through gasification systems. It is also important that future bioenergy projects include maize, cotton, and cassava residue as a priority for bioenergy generation since their energy potential appears to be higher than for other crops.
ISSN:2333-8334
2333-8334
DOI:10.3934/energy.2024008