Nonribosomal peptide synthetase (NPS) genes in Fusarium graminearum, F. culmorum and F. pseudograminearium and identification of NPS2 as the producer of ferricrocin

Fungi have the potential to produce a wide range of secondary metabolites including polyketides and small peptides produced by nonribosomal peptide synthetases (NPS). Fusarium graminearum is a mycotoxin producing pathogen of cereals and knowledge of the infection process is essential for the develop...

Full description

Saved in:
Bibliographic Details
Published in:Current genetics Vol. 51; no. 1; pp. 43 - 58
Main Authors: Tobiasen, Carsten, Aahman, Johan, Ravnholt, Kristine Slot, Bjerrum, Morten Jannik, Grell, Morten Nedergaard, Giese, Henriette
Format: Journal Article
Language:English
Published: United States Berlin/Heidelberg : Springer-Verlag 01-01-2007
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fungi have the potential to produce a wide range of secondary metabolites including polyketides and small peptides produced by nonribosomal peptide synthetases (NPS). Fusarium graminearum is a mycotoxin producing pathogen of cereals and knowledge of the infection process is essential for the development of disease control. Bioinformatics provide a means to identify genes encoding NPSs, the products of which may act as fungal virulence factors. The F. graminearum genome sequence was analysed and similarity searches and application of prediction server service identified 15 putative NPS genes. NPS1 and NPS2, were found to be related to genes involved in NPS hydroxamate siderophore biosynthesis and chemical analysis of a F. graminearum NPS2 deletion mutant showed that this gene encodes the NPS responsible for the biosynthesis of ferricrocin. The expression of the NPS genes was analysed in Fusarium culmorum. NPS1 and NPS19 differed from the remainder of the genes, as they were only expressed during infection of barley roots and not under the different culture conditions tested. Strains of F. graminearum, F. culmorum and Fusarium pseudograminearum were examined for the presence and expression of the 15 identified NPS genes. With the exception of NPS18, that is absent in F. pseudograminearum, all the NPS genes are represented in the diffferent species. Lack of transcripts from some genes and the presence of frameshift and stop codons in four of the NPS genes in the sequenced F. graminearum strain suggest that some are pseudogenes.
Bibliography:http://dx.doi.org/10.1007/s00294-006-0103-0
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0172-8083
1432-0983
DOI:10.1007/s00294-006-0103-0