Synthesis of LiEu1-xBix(MoO4)2 red phosphors by sol-gel method and their luminescent properties

The Bi3+ doped molybdate-based red-emitting phosphors, LiEu1-xBix(MoO4)2, were successfully synthesized with a sol-gel method. The prepared LiEu1-xBix(MoO4)2 phosphors exhibited pure and intense red emission at 613 nm under the excitation of near-UV 394 nm. It was discussed in detail that the influe...

Full description

Saved in:
Bibliographic Details
Published in:中国稀土学报:英文版 Vol. 30; no. 4; pp. 330 - 334
Main Author: 雷惊雷 于艳 李凌杰 程士宝 李冠宇 李念兵
Format: Journal Article
Language:English
Published: 2012
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Bi3+ doped molybdate-based red-emitting phosphors, LiEu1-xBix(MoO4)2, were successfully synthesized with a sol-gel method. The prepared LiEu1-xBix(MoO4)2 phosphors exhibited pure and intense red emission at 613 nm under the excitation of near-UV 394 nm. It was discussed in detail that the influence of the synthesis conditions such as the doping concentration of Bi3, the dose of citric acid, pH of the precursor solution and the sintering temperature on the emission intensity of the phosphors. According to the results, the optimal condition was obtained: the doping concentration of Bi3+ was 15 mol.%, molar ratio of citric acid to metal ions was 1.5:1, pH of the precursor solution was 1.0 and the sintering temperature was 800 ℃. The X-ray diffraction (XRD) patterns of the LiEuo.85Bi0.15(MoO4)2 phosphor prepared under the optimal condition indicated that the phosphor was single phase with tetragonal scheelite structure. The Commission Intemationale de I'E- clairage (CIE) chromaticity coordinates of LiEuo.85Bio.15(MoO4)2 were (x=0.655, y=0.345), which were closer to the national television stan- dard committee (NTSC) standard values (x=0.670, y=0.330) than that of a commercial red phosphor of Y202S:Eu3+(x=0.630, y=0.350). This LiEuo.85Bi0As(MoO4)2 red phosphor is a promising candidate for the fabrication of white light-emitting diode (W-LED) with near-UV chips.
Bibliography:red phosphor; sol-gel method; LiEU1-xBix(MoO4)2; rare earths
11-2788/TF
The Bi3+ doped molybdate-based red-emitting phosphors, LiEu1-xBix(MoO4)2, were successfully synthesized with a sol-gel method. The prepared LiEu1-xBix(MoO4)2 phosphors exhibited pure and intense red emission at 613 nm under the excitation of near-UV 394 nm. It was discussed in detail that the influence of the synthesis conditions such as the doping concentration of Bi3, the dose of citric acid, pH of the precursor solution and the sintering temperature on the emission intensity of the phosphors. According to the results, the optimal condition was obtained: the doping concentration of Bi3+ was 15 mol.%, molar ratio of citric acid to metal ions was 1.5:1, pH of the precursor solution was 1.0 and the sintering temperature was 800 ℃. The X-ray diffraction (XRD) patterns of the LiEuo.85Bi0.15(MoO4)2 phosphor prepared under the optimal condition indicated that the phosphor was single phase with tetragonal scheelite structure. The Commission Intemationale de I'E- clairage (CIE) chromaticity coordinates of LiEuo.85Bio.15(MoO4)2 were (x=0.655, y=0.345), which were closer to the national television stan- dard committee (NTSC) standard values (x=0.670, y=0.330) than that of a commercial red phosphor of Y202S:Eu3+(x=0.630, y=0.350). This LiEuo.85Bi0As(MoO4)2 red phosphor is a promising candidate for the fabrication of white light-emitting diode (W-LED) with near-UV chips.
LEI Jinglei , YU Yan, LI Lingjie , CHENG Shibao , LI Guanyu , LI Nianbing (1. College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China; 2. School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China)
ISSN:1002-0721
2509-4963