基于偏好知识的多目标优化算法求解计及电源侧的配电网故障恢复
针对传统故障恢复在处理电源侧问题上的不足,基于变电站主变在实际运行时要尽量满足N-1准则的要求,提出了变压器越限个数和变压器平均负载率两个目标函数。在求解故障恢复的算法上,针对基于传统占优机制的经典多目标智能算法在迭代过程中没有考虑决策者的偏好知识,从而导致算法收敛缓慢和无法得到最优解的问题,将g占优机制和TOPSIS方法引入多目标智能算法。g占优机制中的参考点可以根据故障恢复问题的特殊要求进行灵活设计,TOPSIS方法可将决策者的偏好知识融入算法的迭代过程中。这些措施可以有效地提高解的质量和算法的收敛性能。最后,通过算例验证了该算法的可行性和有效性。...
Saved in:
Published in: | 电力系统保护与控制 Vol. 44; no. 4; pp. 1 - 8 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | Chinese |
Published: |
新能源电力系统国家重点实验室 华北电力大学,北京,102206%沈阳供电公司,辽宁 沈阳,110811
2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 针对传统故障恢复在处理电源侧问题上的不足,基于变电站主变在实际运行时要尽量满足N-1准则的要求,提出了变压器越限个数和变压器平均负载率两个目标函数。在求解故障恢复的算法上,针对基于传统占优机制的经典多目标智能算法在迭代过程中没有考虑决策者的偏好知识,从而导致算法收敛缓慢和无法得到最优解的问题,将g占优机制和TOPSIS方法引入多目标智能算法。g占优机制中的参考点可以根据故障恢复问题的特殊要求进行灵活设计,TOPSIS方法可将决策者的偏好知识融入算法的迭代过程中。这些措施可以有效地提高解的质量和算法的收敛性能。最后,通过算例验证了该算法的可行性和有效性。 |
---|---|
Bibliography: | YAO Yuhai, WANG Zengping, ZHANG Shoukui, GUO Kunya, JIN Peng, QI Zheng (1. State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; 2. Shenyang Power Supply Company, Shenyang 110811, China) Traditional distribution network service restoration cannot completely satisfy the requirements of N-1 security verification of transformer in station, and the corresponding mathematical model is constructed. Without considering the preference of decision maker in the iterative process, the classic multi-objective evolutionary algorithm, based on Pareto dominance criteria and crowding distance sorting method, is of slow convergence speed. This paper proposes a multi-objective binary particle swarm optimization based on g dominance and technique for order preference by similarity to an ideal solution (TOPSIS) to solve distribution network service restoration. The reference point ofg dominance can design flexibly according to the re |
ISSN: | 1674-3415 |
DOI: | 10.7667/PSPC150651 |