Моделирование потенциального ареала обитания растений методами машинного обучения
Статья посвящена моделированию потенциального ареала обитания вида Pulsatilla turczaninovii Kryl. et Serg. (Прострел Турчанинова). Моделирование экологических ниш растений — процесс построения моделей с использованием современных компьютерных алгоритмов и биоклиматических данных для прогнозирования...
Saved in:
Published in: | Izvestii͡a︡ Altaĭskogo gosudarstvennogo universiteta no. 4(126); pp. 85 - 92 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Altai State University
01-09-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Статья посвящена моделированию потенциального ареала обитания вида Pulsatilla turczaninovii Kryl. et Serg. (Прострел Турчанинова). Моделирование экологических ниш растений — процесс построения моделей с использованием современных компьютерных алгоритмов и биоклиматических данных для прогнозирования ареала обитания видов растений. Результатом моделирования является модель, с помощью которой можно картографировать территорию произрастания или проживания видов, прогнозировать ареал или анализировать влияние окружающей среды на виды. Для построения эффективных моделей прогнозирования экологических ниш растений требуются данные как о присутствии видов, так и об их отсутствии на той или иной территории. Точки отсутствия видов (или фоновые точки) не регистрируются в базах данных, но могут быть сгенерированы с использованием разных подходов. В данной статье описывается реализация трех подходов к выбору точек псевдо-отсутствия видов на определенной территории и представлен результат моделирования потенциального ареала обитания вида Pulsatilla turczaninovii Kryl. et Serg. с помощью алгоритма случайного леса — наиболее популярного способа построения ансамблей деревьев решений. Программная реализация модели осуществлена на высокоуровневом языке программирования Python. |
---|---|
ISSN: | 1561-9443 1561-9451 |
DOI: | 10.14258/izvasu(2022)4-13 |