Optimization of IC Separation Based on Isocratic-to-Gradient Retention Modeling in Combination with Sequential Searching or Evolutionary Algorithm
Gradient ion chromatography was used for the separation of eight sugars: arabitol, cellobiose, fructose, fucose, lactulose, melibiose, N-acetyl-D-glucosamine, and raffinose. The separation method was optimized using a combination of simplex or genetic algorithm with the isocratic-to-gradient retenti...
Saved in:
Published in: | Journal of analytical methods in chemistry Vol. 2013; no. 2013; pp. 1 - 11 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cairo, Egypt
Hindawi Puplishing Corporation
01-01-2013
Hindawi Publishing Corporation Hindawi Limited |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Gradient ion chromatography was used for the separation of eight sugars: arabitol, cellobiose, fructose, fucose, lactulose, melibiose, N-acetyl-D-glucosamine, and raffinose. The separation method was optimized using a combination of simplex or genetic algorithm with the isocratic-to-gradient retention modeling. Both the simplex and genetic algorithms provided well separated chromatograms in a similar analysis time. However, the simplex methodology showed severe drawbacks when dealing with local minima. Thus the genetic algorithm methodology proved as a method of choice for gradient optimization in this case. All the calculated/predicted chromatograms were compared with the real sample data, showing more than a satisfactory agreement. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 Academic Editor: Miguel de la Guardia |
ISSN: | 2090-8865 2090-8873 |
DOI: | 10.1155/2013/549729 |