Short exposure of Artemia salina to group-12 metals: Comparing hatchability, mortality, lipid peroxidation, and swimming speed

The hatchability, mortality rate, lipid peroxide levels, and swimming speed of Artemia salina have been compared based on short exposures of ZnCl2, CdCl2, and HgCl2 in artificial seawater. The hatching tests were carried out for 12, 24, 36, and 48 h at 28 °C. Mortality rate and lipid peroxide (LPO)...

Full description

Saved in:
Bibliographic Details
Published in:Ecotoxicology and environmental safety Vol. 213; p. 112052
Main Authors: Ñañez Pacheco, Giuliana K., Sanabio Maldonado, Nelson S., Pastrana Alta, Roxana Y., Aguilar Vitorino, Hector
Format: Journal Article
Language:English
Published: Netherlands Elsevier Inc 15-04-2021
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The hatchability, mortality rate, lipid peroxide levels, and swimming speed of Artemia salina have been compared based on short exposures of ZnCl2, CdCl2, and HgCl2 in artificial seawater. The hatching tests were carried out for 12, 24, 36, and 48 h at 28 °C. Mortality rate and lipid peroxide (LPO) levels were determined after 24 h of exposure at 28 °C, in the dark, and on living larvae using the FOX method. The swimming speed was determined after 24 h using a microcomputer coupled to a digital camera, with simultaneous treatment of the recorded images every 25 s, at 25 °C, under red-light irradiation. Results showed that Zn caused a gradual inhibition of the hatching for concentrations <900 µmol L−1; however, Cd and Hg displayed almost complete inhibition for concentrations ≤100 µmol L−1. Also, the heavy metals caused a dose-dependent increase of mortality (LD50) in the following order: Zn = 3290 µmol L−1 < Cd = 2206 µmol L−1 < Hg = 15.6 µmol L−1. Furthermore, significant LPO levels were found for Cd (1500–2000 µmol L−1, p < 0.001) and Hg (5–20 µmol L−1, p < 0.001). Finally, the swimming speed values increased significantly, for Zn ≈ 2.5 mm s−1 (1500 µmol L−1, p < 0.001), Cd ≈ 3.5 mm s−1 (2000 µmol L−1, p < 0.05), and Hg ≈ 4.0 mm s−1 (15 µmol L−1, p < 0.05), after 24 h exposure. There is a clear dose-dependent toxicity, indicating that Zn, Cd and Hg can induce significant changes in hatchability, mortality, and ethological and biochemical parameters. •A. salina underwent significant changes in hatchability, mortality, and ethological and biochemical parameters.•Both hatchability and mortality were dose-dependent with increasing contaminant.•The underlying toxicity appears to be related to the generation of oxidative stress and subsequent lipid peroxidation.•The reduction of swimming speed is related to the increased concentration of heavy metals.
ISSN:0147-6513
1090-2414
DOI:10.1016/j.ecoenv.2021.112052